Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273515

ABSTRACT

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Subject(s)
Fagus , Picea , Pinus sylvestris , Quercus , Trees , Forests , Picea/physiology , Norway , Climate Change
2.
Sci Total Environ ; 905: 167153, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37730045

ABSTRACT

Boreal forests represent an important carbon sink and, therefore, significantly contribute to climate change mitigation. Tree-ring width series of boreal species reflect climate variation at the moment of tree-ring formation but also lagged climatic effects from dormancy preceding tree-ring formation and antecedent growing seasons. However, little is known about how the growth sensitivity to climate in specific intra-annual periods varies across the landscape. Here, we assessed growth responses to climate variation during the 45 months preceding the tree-ring formation for nine boreal stands of Picea glauca and Picea mariana distributed along the gradients of elevation and slope aspect. We combined process-based modeling of wood formation and remote sensing data to determine growth phenology at each site. Next, we classified intra-annual seasons with significant climate-growth correlations based on the timing of dormancy and growth periods. Both the phenology and the climate-growth relationships systematically shifted with elevation and, to a lower extent, also with slope orientation at the treeline. The mean duration of the growing season varied between 100 days at treelines above 900 m and 160 days at lowlands below 500 m. The growth at treelines was stimulated by temperature in the summer of the tree-ring formation year and two years before tree-ring formation. The period of significant climate-growth correlations during the current summer did not exceed three months in agreement with the local duration of the growing season. The growth of trees in lower elevations was instead stimulated by high temperature during the dormancy periods but restricted by high temperature in antecedent summer seasons. In conclusion, our study highlights the linkage between the timing of climate-growth sensitivity and growth phenology, primarily determined by proximity to the treeline. Consequently, accounting for landscape gradients in growth phenology is crucial for upscaling the climatic limits of boreal stands' growth as climate change progresses.


Subject(s)
Picea , Taiga , Trees , Wood , Climate Change , Seasons , Temperature , Forests
SELECTION OF CITATIONS
SEARCH DETAIL
...